Zur Umweltstrategie von Henkel
Öko-Leadership – Herausforderung mit Konsequenzen

Umweltmanagement
Umwelthandbuch: Umweltschutz mit System
Öko-Logistik: Auf die Schiene gebracht
Umweltmonitoring: Flüsse auf den Grund geschaut
Ökobilanzen: Wichtige Wegweiser

Produkte
Erdreichsanierung: Spezialisten für saubere Böden
Abfall-Entwässerung: Weniger ist mehr
Kunststoff-Flaschen: Sonderbehandlung für Leichtgewichte
Oberflächenbehandlung: Am laufenden Band
Industrieklebstoffe: Eine gute Bindung
Bauten-Imprägnierung: Wasser stoppt Wasser
Produktverpackungen: Mehr Ideen für weniger Müll
Bohrspiladditive: Das geht runter wie Öl
Henkel Austria: Recycling nach Wiener Art
Neue Waschmittelgeneration: Kleine Perlen, große Wirkung

Produktion
Abfall: Eine saubere Wirtschaft
Essigsäure-Aufbereitung: Ewiger Kreislauf
Zeolith-Rückstände: Endlich gut genug
Chrom-Recycling: Eine gute Ausbeute
Weniger Sonderabfall: Einfach und sicher
Know-how-Transfer: Grenzenlos
Neue Hydrieranlage: Erfahrung kommt der Umwelt zugute
Erhöhte Sicherheit: Aller guten Dinge sind drei
Verminderte Staubbelastung: Der Zylinder hat ausgedient
Lärmminderung: Dämpfer für laute Betriebe
Bodensanierung: Nie mehr Last mit alten Lasten
Henkel Corporation USA: Vorbildliche Verhältnisse

Umweltdata

Chemisch-technische Fachausdrücke
Öko-Leadership – Herausforderung mit Konsequenzen

Mit Blick auf die Herausforderungen der Zukunft hat Henkel das strategische Ziel formuliert: Neben der Leistungs- und Qualitätspflichten streben wir auch die ökologische Führung an. Die Umsetzung dieses Anspruchs erfordert konsequente Maßnahmen und Prozesse, von denen alle Unternehmensaktivitäten betroffen sind.

„Wir stellen uns den wirtschaftlichen und ökologischen Herausforderungen des neuen Jahrtausends.“ So beginnt das neue Leitbild der Henkel KGaA. Und in den danach folgenden Grundsätzen, die das Selbstverständnis des Unternehmens beschreiben, heißt es: „Henkel ist das ökologisch führende Unternehmen.“ Neben den Dimensionen Leistung, Anwendungssicherheit und Convenience unserer Produkte haben wir damit gleichberechtigt die Umweltverträglichkeit unseres Tuns gestellt als Schlüsselfaktor einer umfassenden Henkel-Qualität.

1982 haben wir mit den Unternehmensleitlinien zum Umwelt- und Verbraucherschutz die Einstellung des Unternehmens zu Fragen der Produktions- und Produktssicherheit und ihrer Umweltverträglichkeit definiert.

Im Rahmen des damals und auch heute noch aktuellen Öko-Konzeptes hat Henkel dann Mitte der 80er Jahre drei Ziele beschrieben, die mit der Bearbeitung ökologischer Themen anzustreben seien:
- Erfüllung der gesellschaftlichen Verantwortung,
- Stärkung des Henkel-Images,
- Erzielung von Wettbewerbsvorteilen.

Die Instrumente für eine aktive Bearbeitung von Umweltthemen sind im Unternehmen ausreichend vorhanden. So verfügt Henkel seitlangen im Unternehmensbereich Forschung und Technologie über zwei zentrale Bereiche, die sich diesen Aufgaben widmen. Im Bereich Umweltschutz und Sicherheit werden alle produktions- und standortrelevanten Themen behandelt, einschließlich der Emissionen und Immissionen, Energie, Abluft, Abwasser, Lärm. Im Bereich Biologie/Produktsicherheit werden alle Aspekte der Sicherheit unserer Produkte für Mensch und Umwelt bearbeitet.
Beide Bereiche kooperieren miteinander sowie mit allen Fachabteilungen der operativen Unternehmensbereiche, der Produktentwicklung/Anwendungstechnik, der Produktion, dem Marketing und dem Vertrieb.

Nicht zuletzt dank dieser effizienten Struktur ist Henkel sowohl im Produkt- als auch im Produktionsbereich ein für seine Umweltqualität bekanntes Unternehmen geworden.

Vier Voraussetzungen für weitere Fortschritte sieht Henkel als notwendig an:

Offenheit zu einem steten Bewußtseinwandel, weil neue Fragestellungen, sich rasch ändernde Rahmenbedingungen und gesellschaftliche Werte neue Denkansätze und Einstellungen erfordern.

Innovationskraft, weil wir neuartige Instrumente, Produkte und Verfahren brauchen, um Lösungen herbeizuführen.

Kooperationsbereitschaft, weil wir vernetzte Probleme nur mit organisationsübergreifenden Teamstrukturen lösen können. Und weil wir dafür neue Partner, aber auch neuartige Formen der Zusammenarbeit finden müssen.

Und nicht zuletzt freiwillige Maßnahmen, weil nur dadurch Glaubwürdigung, vor allem aber Wettbewerbsvorteile, erreicht werden können.

Der Anspruch der „Öko-Leadership“ verlangt eine umfassende Umweltorientierung; ökologische Aspekte müssen konzeptionell in die Ziele und Vorhaben der operativen und funktionalen Unternehmensbereiche einbezogen werden.

Die Projekte zu bessere Umweltverträglichkeit von Produkten und Verfahren werden ergänzt durch umweltrelevante Projekte aus anderen Tätigkeitsfeldern des Unternehmens, zum Beispiel Vertrieb, Verwaltung, Einkauf oder Logistik.

So hat der Bereich Beschaffung von Henkel in seinen Einkaufsrichtlinien die bevorzugte Zusammenarbeit mit Lieferanten beschlossen, die auch ein ausgeprägtes Umweltbewußtsein beweisen.

Wir wollen informieren und kommunizieren, um Ideen und Aktionen zu ermutigen und bei der Durchsetzung zu helfen. Das macht auch nicht vor externen wie Umweltgruppen, Bürgerinitiativen und Schulen halt, wenn sich diese um fundierten Fortschritt bemühen. Ideen sollen nicht erstellt werden, aber wir können auch nicht darauf verzichten, Prioritäten zu setzen. Gerade bei umweltrelevanten Aktivitäten müssen wir auf den besten „Wirkungsgrad“ achten. Das heißt, daß wir vorausschauend Ideen verfolgen, die den größten Umweltfortschritt bringen oder dort wirken, wo die Umwelt am stärksten betroffen ist.

Um einerseits möglichst viele Aktivitäten zu initiieren und andererseits durch Koordination möglichst viel Wirkung zu erzielen, hat Henkel den Koordinationskreis Öko-Leadership gegründet. Unter der Leitung des für Forschung und Technologie verantwortlichen Vorstandsmitglieds, Dr. Wilfried Umbach, arbeiten alle Unternehmensbereiche am gemeinsamen Ziel, den Begriff Henkel-Qualität auf Umweltverträglichkeit auszudehnen.

Konsequenterweise orientiert sich das Konzept eines neuen Umwelthandbuchs für den größten Henkelstandort in Düsseldorf an der DIN/ISO-Systematik. Die Anforderungen an das umweltgerechte Verhalten von Unternehmen werden weiter ansteigen. Aber auch die Chancen werden größer für Unternehmen, die sich dieser Herausforderung stellen.

Hans-Dieter Winhous
Vorsitzender der Geschäftsführung
Mit Systematik beim Umweltschutz wird eine höhere Effizienz erreicht

Umweltmanagement

Umweltschutz mit System

Daß Henkel die gesetzlichen Forderungen in bezug auf Umweltschutz und Sicherheit erfüllt, ist selbstverständlich. Doch es gibt auch Henkel-Standards, die über das hinausgehen, was Gesetze verlangen. Umweltschutz muß im Unternehmen tagtäglich gelebt werden. Wie das soll nun in einem Umwelthandbuch beschrieben werden. Sein Inhalt: die Organisation des Umweltschutzes und die Vorgehensweise bei Aktivitäten, die Auswirkungen auf die Umwelt haben können.

Umwelt handbuch als Leitfaden für richtiges Verhalten

In dem Handbuch wird beispielsweise festgeschrieben: „Wer ist in Umweltfragen wofür verantwortlich?“ Oder: „Welche Vorkehrungen sind beim Umgang mit potentiell umweltgefährdenden Stoffen zu treffen, um Belastungen der Umwelt zu vermeiden?“ Fragen, die sich den Mitarbeitern bei ihrer Arbeit täglich stellen. Damit sie diese im Sinn der Umwelt stets richtig beantworten, regelt das geplante Umwelt handbuch beispielsweise auch die betriebliche Umweltschutz-Schulung. Das Umwelt handbuch wird künftig als Leitfaden dienen, um alle gesetzlichen Forderungen, freiwilligen Industrievereinbarungen und unternehmensinternen Vorgaben nachzulesen und einzuhalten.

Konzept für große und kleine Standorte geeignet

Es orientiert sich in seiner Struktur an der Qualitätsnorm →DIN ISO 9001<, in der der Aufbau des Qualitäts managementsystems detailliert beschrieben ist, und fügt sich damit übersichtlich in bestehende Strukturen ein.

Das Konzept ist ebenso für große wie für kleine Standorte geeignet. Es greift auf bestehende Institutionen wie die gesetzlich geforderten Beauftragten für Immissions schutz, Gewässerschutz und Abfall zurück, so daß nicht zwangsläufig neue Strukturen geschaffen werden müssen. Auch externe Firmen können auf die Erfahrungen der Arbeitsgruppe zurückgreifen: Wer ein Umwelt handbuch für seinen Betrieb auflegen will, kann sich an die Düsseldorfer Henkel-Tochter COGNIS wenden.

Oko-Logistik

Auf die Schiene gebracht

Ökologisch? Na, logisch! Unter diesem Motto steht das neue Distributions konzept für Wasch- und Reinigungsmittel: Henkel ist im Fernverkehr in Deutschland vom Lastwagen auf die Bahn umgestie gen. Möglich machen dies bundesweit neun Regionalläger mit Schienennanschluß und die veränderten verkehrspolitischen Rahmenbedingungen wie die →Liberalisierung der Transportpreisbildung in Europa.

Neun dezentrale Regionallager ersetzen Zentrallager

Blick zurück in die Vergangenheit: Noch im vergangenen Jahr holen Lastwagen die Henkel-Produkte von den Zentrallagern direkt neben den Produktionsanlagen in Düsseldorf und Genthin ab. Rund 370.000 Tonnen transportierten sie durchschnittlich 300 Kilometer weit – entweder direkt zum Kunden oder zum nächsten Umschlagplatz oder Außenlager, von wo die Kunden mit Kleinlieferungen unter 2,5 Tonnen versorgt wurden.

Beide Effekte zusammen führen zu einer um 60 Prozent höheren Transportkapazität. Das heißt, bei gleicher Gesamttransportleistung benötigt Henkel statt 22.000 Lastwagen nur noch 13.500 Eisenbahnwaggons, die etwa 350 Güterzügen entsprechen.

Lastwagen nur noch auf kurzen Strecken im Einsatz

Produktionsanlagen sofort zu den Großkunden.
Für den Transport von Konsumgütern in Deutschland plant die Henkel-Distribution ein weiteres modifiziertes Logistik-System: Alle Produkte, die nicht per Bahn auf den Weg gebracht werden können, sollen weiterhin per Lastwagen transportiert werden – allerdings mit „Brummis“ einer neuen Generation: den „höhenvariablen Doppelstöckern“.
Dieses Konzept für den Transport von Konsumgütern entstand in enger Zusammenarbeit mit einem bekannten Hersteller für Lastwagen-Kofferaufbauten, der die Doppelstock-Beladung entwickelte.
Weil die Anhänger unterschiedlich hohe Paletten in zwei Etagen transportieren können, läßt sich bis zu 30 Prozent mehr Ladung unterbringen. Entsprechend weniger oft sind die Lasten auf den Straßen unterwegs.

Einmal jährlich entsnimmt Henkel an insgesamt 140 Stellen Wasserproben aus dem Rhein und seinen wichtigsten Nebenflüssen und prüft deren chemische Belastung.

Umweltmonitoring
Flüssen auf den Grund geschaut
1992 dehnte Henkel seine Untersuchungen auf Ostdeutschland aus, dem aus der ehemaligen DDR fehlten leicht zugängliche Daten über die chemische Belastung der Fließgewässer.

Intensives Untersuchungsprogramm in Ostdeutschland

<table>
<thead>
<tr>
<th>Probenahmestelle</th>
<th>Sauerstoff (mg/l)</th>
<th>Sauerstoff-sättigung (%)</th>
<th>Boc (mg/l)</th>
<th>Phosphor (mg/l)</th>
<th>Anionische Tenside (mg/l)</th>
<th>Kationische Tenside (mg/l)</th>
<th>CSR (mg/l)</th>
<th>DOC (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elbe</td>
<td>10,4</td>
<td>96</td>
<td>0,16</td>
<td>0,16</td>
<td>0,057</td>
<td>0,046</td>
<td>29,9</td>
<td>5,4</td>
</tr>
<tr>
<td>Schönebeck</td>
<td>10,4</td>
<td>97</td>
<td>0,31</td>
<td>0,17</td>
<td>0,135</td>
<td>0,039</td>
<td>39,4</td>
<td>6,9</td>
</tr>
<tr>
<td>Saale</td>
<td>10,9</td>
<td>98</td>
<td>0,18</td>
<td>0,08</td>
<td>0,08</td>
<td>0,038</td>
<td>18,8</td>
<td>4,9</td>
</tr>
<tr>
<td>Groß-Rosenburg</td>
<td>12,7</td>
<td>118</td>
<td>0,24</td>
<td>0,24</td>
<td>0,036</td>
<td>0,035</td>
<td>38,4</td>
<td>8,4</td>
</tr>
<tr>
<td>Magdeburg</td>
<td>10,4</td>
<td>97</td>
<td>0,12</td>
<td>0,03</td>
<td>0,044</td>
<td>0,024</td>
<td>19,1</td>
<td>4,7</td>
</tr>
<tr>
<td>Weiße Elster</td>
<td>7,2</td>
<td>65</td>
<td>0,39</td>
<td>0,16</td>
<td>0,133</td>
<td>0,08</td>
<td>42,5</td>
<td>6,9</td>
</tr>
<tr>
<td>Oberbau</td>
<td>9,7</td>
<td>90,8</td>
<td>0,13</td>
<td>0,126</td>
<td>0,056</td>
<td>0,009</td>
<td>14,4</td>
<td>3,4</td>
</tr>
</tbody>
</table>

Die Tabelle zeigt, daß punktuell Sauerstoff-sättigungen von mehr als 100 Prozent erreicht werden. Dies weist auf Nährstoffreichtum und Eutrophierungs-Erscheinungen in Gewässern hin.

Neue Daten über chemische Belastung der Fließgewässer

Nur die Weiße Elster schnitt bei der Beurteilung aller Einzelmeßdaten nicht so gut ab: In den Sommermonaten sinkt dort die Sauerstoffkonzentration auf 3,4 Milligramm pro Liter. Weniger als vier Milligramm pro Liter werden jedoch für Fische als kritisch angesehen. Nach Ansicht der Ökologen wird sich die Situation mit dem Bau von Kläranlagen erheblich verbessern.

Phosphatfreie Waschmittel machen sich bemerkbar

Ökobilanzen
Wichtige Wegweiser

Nützliches Instrument zur Schwachstellenanalyse

Genetische Information auf bewährten Stamm übertragen

Diese Enzyme der ersten Generation ersetzen die Forscher im Laufe der Zeit durch eine ebenfalls aus der Natur isolierte Protease, die sich allerdings durch eine höhere Wascheistung auszeichnet. Deren genetische Information wurde mittlerweile auf einen seit vielen Jahren bewährten Produktionsstamm übertragen. Bei der vergleichenden Untersuchung dieser beiden Enzyme deckten die COGNIS-Mitarbeiter Bemerkenswertes auf: Die gentechnisch hergestellten Proteasen der zweiten Generation reduzieren die produktionbedingten Emissionen um mehr als 60 Prozent. Bei der Herstellung wird außerdem jährlich genausoviel – Primärenergie eingespart, wie für
11,5 Millionen 60-Grad-Waschingänge mit modernen Haushaltswaschmaschinen benötigt wird. Doch die Proteasen und ihre Produktionstänze sind noch lange nicht ausgereizt: Durch ständige Verbesserungen wollen die Forscher bei COGNIS die Umweltbelastungen in naher Zukunft nochmals um die Hälfte reduzieren.

Positiver Einfluss auf die Kohlendioxid-Bilanz

Gesamtkonzept Umweltschutz beginnt bereits bei der Produktentwicklung

Wenn ein Produkt entwickelt wird, haben die Henkel-Fachleute nicht nur die Anforderungen an die technische Produktleistung und die Bedürfnisse der Kunden vor Augen. Ihr Ziel: weniger Umweltbelastungen durch Produkte, die bei ihrer Herstellung keinen oder nur wenig Abfall erzeugen, deren Gebrauch umweltverträglich ist und die nach ihrer Anwendung möglichst vollständig biologisch abbaubar sind oder zumindest schadlos entsorgt werden können. Gelungene Lösungen sind unter anderem minimierte Produktverpackungen und lösemittelfreie Lacke.

Erdrechtsanierung
Spezialisten für saubere Böden

Mit kleinen Mengen Öl kann die Natur selbst fertig werden, denn für einige Mikroorganismen ist es ein gefundenes Fressen. Sie zerlegen Mineralöl in unschädliche Bestandteile und führen es so in den natürlichen Kreislauf zurück. Doch das kann dauern: Bis zu 70 Jahre können vergehen, bis das Öl vollständig abgebaut ist.

Mineralöl wird je nach Verunreinigung unterschiedlich schnell abgebaut. So kann es bei einer Verunreinigung mit 30% Mineralöl etwa 30 Jahre dauern, bis die Mineralölmenge im Boden auf 5% abgefallen ist. Bei einer Verunreinigung mit 70% Mineralöl dagegen dauert es bis zu 100 Jahre, bis die Mineralölmenge im Boden auf 5% abgefallen ist.

Powercocktail mit biologisch abbaubaren Inhaltsstoffen

Nicht optimal: Bodenreinigung in Verbrennungsanlagen

Die Henkel Metallchemie hat jüngst zur Sanierung kontaminiertener Böden eine besonders umfassende Produktpalette entwickelt, die jetzt von COGNIS vermarktet wird. Dazu gehören nicht nur Tensid­Kombinationen für die Bodenwäsche, das System beinhaltet auch Prozeßchemikalien wie Entschäumungs­mittel, organische Emulsions­palt­er, »Adsorptions-«, Trenn- und »Flockungs­hilfsmittel für weitere Verfahrensschritte. Alle Produkte sind genau aufeinander abgestimmt und wirken ohne organische »Lösemittel. »Emissionen von Lösemitteldämpfen und Sekundär­kontaminationen sind damit also ausgeschlossen.

Tensi­side machen die Erd­körnchen erst richtig naß

Aber auch für dessen Behandlung haben die Produktentwickler aus der Metallchemie wirksame Mittel auf den Markt gebracht. Bei entsprechender Konzeption der Waschanlagen können die zur Auf- bereitung des Waschwassers vorhandenen Anlagenteile statt zur Floation und Sedimentation auch zur Abwasserbehandlung verwen- det werden. Dort wirken die glei- chen Emulsionsspüler und Flo- kungshilfsmittel, die man zur Reini- gung der Bäden verwendet.

Altöl-Entwässerung

Weniger ist mehr

Laboruntersuchungen für opti- male Behandlung des Altöls

Kunststoff-Flaschen

Sonderbehandlung für Leichtgewichte

Doch das Reinigen und Etikettieren kann nicht in der für Glasflaschen bewährten Weise verlaufen. Während diese schärfen Reinigungsmittel und hohe Temperaturen vertragen, um hygienisch sauber zu werden, verlangen Kunststoff-Flaschen das Gegenstück: Milde und dennoch kräftige Reinigungsmittel, die die Flaschen nicht schädigen, aber trotzdem hygienische Sauberkeit zum Schutz der Verbraucher gewährleisten - und das bei niedrigeren Temperaturen.

Das Gemeinschaftsunternehmen Henkel-Ecolab hat dafür ein spezielles Behandlungskonzept entwickelt, mit dem Flaschen während des gesamten Behandlungsprozesses bestmöglich geschützt werden. Selbstverständlich werden damit auch ökologische Anforderungen wie beispielsweise die biologische Abbaubarkeit der eingesetzten Reinigungsmittel erfüllt.

Ebenfalls für einen besseren Umweltschutz sorgen neutrigte Henkel-Klebstoffe für Flaschenetiketten. Sie werden weitgehend auf Basis nachwachsender Rohstoffe hergestellt und sind lösemittelfrei.

Im Labor werden umwelt schonende Verfahren zur Oberflächenbehandlung von Metallen getestet.

Oberflächenbehandlung

Am laufenden Band

Im Umweltbericht 1992 formulierten die Henkel Metallchemie kurz und knapp ihre Ziele für die nahe Zukunft: „... wird die Entwicklung umwelt schonender Verfahren zur Oberflächenbehandlung von Metallen mit Hochdruck vorangetrieben. Die Schrittschritt erzielten Teilergebnisse lassen erwarten, daß auch auch für Architektur-Aluminium in absehbarer Zeit ein chromfreies Vorbehandlungsverfahren gefunden wird.“

Wie so häufig, konnte hier parallel zur Verbesserung der Umweltverträglichkeit ein zusätzlicher Vorteil
für die Kunden erarbeitet werden: ein besseres Langlebverhalten des Beschleunigers. Im Gegensatz zum Nitrit findet keine Selbstzersetzungs- statt, so daß die Behandlungsbäder auch nach längeren Standzeiten beispielsweise über das Wochenende sofort einsatzbereit sind.

Industrieklebssubstanzen

Eine gute Bindung

Gummi bleiben jedoch unversehrt.
Beispiel Klebstoffe für die Holzveredlung: Wenn Kunstdrucke und/oder Metallfolien vollständig miteinander verbunden werden, spielt der Fachmann von ‚kassenieren‘. Kaschiert werden neben Glanzfolien für Bücher und Katakograffen hauptsächlich Folien für die Lebensmittelinustrie. An diese Folien werden hohe Anforderungen gestellt: Sie dürfen nicht reißen, kein Fett und Aroma, keine Feuchtigkeit und Gerüche durchlassen. Außerdem müssen sie gegen Schmutz und Nässe von außen schützen.

Verarbeitungsmöglichkeiten ließen stark zu wünschen übrig

Ziel: Wäbrige Systeme für alle Kaschieraufgaben

Doch dieser Erfolg reicht den Klebstoffexperten noch lange nicht. Ihr nächstes Ziel heißt: die Entwicklung von wäβrigen Kaschiersystemen für alle Kaschieraufgaben.

Beispiel Baubehelfe: Auch Handwerker, die Teppichböden oder Parkett verlegen, können aufbringen. Heute gibt es für fast jede Anwendung einen lösemittelfreien Dispersionskleber. Einige Ausnahmen: Bei Treppen, wo eine schnelle Anfängenhaftung erforderlich ist, bei feuchtigkeitsempfindlichen Parkett- und Holzarten, wo wäβrige Produkte schadens können, sowie bei extrem strapazierten Böden im industriellen Bereich, an die besonders hohe Festigkeitsanforderungen gestellt werden, müssen teilweise noch stark lösemittelhaltige Produkte eingesetzt werden.

Bauten-Imprägnierung

Wasser stoppt Wasser

Nach intensiver Entwicklungsarbeit bietet die Henkel-Bautechnik nun Imprägniermittel auf Wasserbasis an, die ebenso gut wirken wie ihre umweltbelastenden Vorläufer. Außerdem sparen die Imulsionen Verpackungsmaterial, weil sie als Konzentrate verkauft und je nach Anwendung entsprechend verdünnt werden. Ebenfalls geringer: der Transportaufwand.
Produktverpackungen

Mehr Ideen für weniger Müll

Beachtliche Beiträge leistet das Unternehmen in Deutschland und Europa mit seinen umweltverträglichen Produktverpackungen.

Nachfüllbeutel aus Papier sparen 80 Prozent Packmittel ein

Bereits jetzt haben diese Beutel bei allen Produkten, die so abgefüllt werden, in Deutschland einen Anteil von deutlich mehr als der Hälfte der abgesetzten Menge. Auch Flüssigprodukte werden in recycelbaren Nachfüllkartons angeboten, wodurch Kunstoffverpackungen ersetzt werden.

Henkel-Firmen: Spezialisten in Sachen Müllvermeidung

Auch andere Henkel-Firmen sind mittlerweile Spezialisten in Sachen Müllvermeidung. So verkauft das Gemeinschaftsunternehmen Hen-

Produktenwicklung und Qualitätsüberwachung des Bohrspüladditivs Petrofree werden von den Düsseldorfer Laboratorien aus gesteuert.

Bohrspüladditiv

Das geht runter wie Öl

Fortschritt in Technik und Umweltschutz

Aber auch die technische Leistungsfähigkeit der umweltverträglichen Bohrspülung aus dem Hause Henkel wurde gewürdigt: Nach Prüfung durch ein Komitee, das sich aus Fachleuten internationaler Ölgewinnungsunternehmen zusammensetzte, verlieh die renommierte Fachzeitschrift Petroleum Engineer International die „Special Merit Award for Engineering Innovation“.

So ist das Bohrspüladditiv ein überzeugendes Beispiel dafür, daß hohe Produktleistung und Umweltverträglichkeit keine Gegensätze sein müssen.
Produkte

Henkel Austria

Recycling nach Wiener Art

Recyclate nicht nur aufbereiten, sondern auch erneut verwenden

Mit ihrem Recycling-Angebot kann die Henkel Austria nicht nur die Kunststoffabfälle aus der eigenen Produktion, sondern auch rund 80 Prozent der in Wien anfallenden Kunststoff-Flaschen aus Polyethylen recyclieren. Doch die Wiener Henkel-Tochter will nicht nur eigene und fremde Kunststoffe aufbereiten, sie will die Recyclate auch erneut verwenden. So soll den österreichischen Kunden in Zukunft ein Teil der Produkte in neuen Flaschen und Kannen aus alten Kunststoffen angeboten werden. Die erste hundertprozentige Recyclatflasche ist bereits auf dem Markt.

Abfallvermeidungspreis für umweltverträgliches Konzept

Neue Waschmittelgeneration

Kleine Perlen, große Wirkung

Dreijährige Entwicklungsarbeit: im In- und Ausland

Kompakte Perlen sorgen für optimale Leistung

Was sich in einer geschlossenen Großanlage im Verborgenen abspielt, ist an der kleinen Vorschauanlage sichtbar: Der verdichtete Waschmittelbrei wird aus dem Extruder gepreßt.
Umweltbelastungen von Anfang an vermeiden statt später reparieren

Abfall

Eine saubere Wirtschaft

Betriebliche Abfallwirtschaft bei Henkel ist ein wesentlicher Teil des produktionsbezogenen Umweltschutzes. Und das nicht nur aufgrund der stark steigenden Kosten für die Abfallentsorgung.

Die wenigsten Reststoffe sind Abfall

Doch für die wenigsten Reststoffe ist die Endstation die Deponie; viele sind immer noch Wertstoffe. Sekundärrohstoffe heißen sie im Fachjargon, weil sie entweder stofflich oder thermisch verwertet werden können.

Mehr als ein Drittel davon wird in der kommunalen Müllverbrennung für die Erzeugung von Fernwärme genutzt (siehe Grafik Seite 40).
Reststoffe, die zu Wertstoffen wurden, sind unter anderem Aluminat aus der →Zement-Herstellung (siehe Seite 23) und →Natriumsulfat, das bei der →Raubgasentschwefelung im Henkel-Kraftwerk entsteht. Sei
de sind wertvolle Rohstoffe, die wieder in den Stoffkreislauf zurückgeführ werden.

Fachleute überwachen die ordnungsgemäße Entsorgung

Insgesamt fielen 1993 bei Henkel in Düsseldorf 61.191 Tonnen verwertbare Reststoffe an. Ob Kunststoffe, Holz, Metallschrott, Papier, Eau
schutt, Bodenaushub oder Aschen – das Werk wird alles gesammelt. Getrennt, versteht sich.
In einem neuen Reststoffzentrum nehmen sich Fachleute der unterschiedlichen Reststoffarten an. Sie wissen, was und wie umweltverträglich verwertet und entsorgt werden kann. 37 Prozent der Abfälle, die nicht stofflich verwertet werden können, werden der Müllverbrennungsanlage der Stadt Düsseldorf zugeführt, der Rest wird im wesentlichen auf der werkseigenen Deponie oder auf speziellen Deponien für Bodenaushub und Sonderabfälle abgelagert.

Genaue Übersicht über entsorgte und zwischengelagerte Abfälle

Alle zu entsorgenden Abfälle werden von Anfang an mit Hilfe eines elektronischen Datenverarbeitungssystems verfolgt und verlassen das Werk erst, wenn sie ordnungsgemäß gekennzeichnet und regi
striert sind. Auf diese Art erhält das Unternehmen eine genaue Übersicht über die noch zwischengelagerten sowie die bereits entsorgten Abfälle. Das System hat in der Vergangenheit Bodenaushub aus Baumaßnah
liehe Abfallsituation bei Henkel nicht verschlechtert hatte.
Mit der Computer-gestützten Erfas
sung aller Abfälle lassen sich auch die Kosten für die Entsorgung ver-ursachergerecht zuordnen. Erfolge bei der Abfallvermeidung kommen daher direkt den jeweiligen Abteil
gen zugute. Auch dies soll das Umweltbewußtsein jedes einzelnen stärken; denn gerade bei der Abfallvermeidung gilt: Ohne engagierte Mitarbeiter nützen auch die besten Grundsätze nichts. Und Umweltbewußtsein zeigt sich schon im kleinen. Wer in Werkstät
ten, Laboratorien und Verwaltung konsequent Reststoffe getrennt sammelt, wer auf Plastikbecher verzieht und gebrauchte Laserkartuschen oder Farbbandkassett en zur Neuvor
dernug weiterreicht, hat schon ei
nen kleinen Schritt in die richtige Richtung getan.
Essigsaure-Aufbereitung

Ewiger Kreislauf

Von außen macht sie schon viel her, doch erst recht ihr Innenleben ist nicht ohne: Die neue, rund zwölf Meter hohe Extraktionskolonne der Henkel-Ireland in Cork ist das Herz einer Anlage, in der jedes Jahr 3.000 Tonnen reine Essigsäure aus Produktionsabwässern gewonnen werden.

Diese Extraktionsmittel werden ebenfalls für die Reinigung von Böden eingesetzt, die unter Schwermetallen belastet sind (siehe Seiten 10 und 11).

Bei der Herstellung dieser Produkte fallen jährlich rund 30.000 Kubikmeter belastetes Abwasser an, das zwischen acht und zwölf Prozent Essigsäure enthält.

Die Kläranlage im Unternehmen schaffte in der Vergangenheit zwar mühselig ihren biologischen Abbau, doch sie benötigte Energie für die Sauerstoffüberlauftung und eine Menge Kalk für die Neutralisation der Säure. Der dabei anfallende Klärschlamm musste anschließend auf einer Deponie ordnungsgemäß entsorgt werden.

Iren setzen auf ein bewährtes Extraktionsverfahren

Recycliertes Lösungsmittel bleibt im Kreislauf

Wenn man allerdings die beiden Flüssigkeiten - zum Beispiel mit einem Rührer - kräftig durcheinandermisch, entstehen kleine Lösungsmittel-Tropfen mit großer Oberfläche, durch die die Essigsäure aus der wäfigen Phase schneller und besser herausgelöst wird.

Beide Ströme werden getrennt aufbereitet. Das Raffinat landet in einem Striper, in dem das restliche Ethylacetat aus dem Abwasser ausgetrieben und kondensiert wird. Das verbleibende Abwasser wird in die werkseigene Kläranlage geleitet. Der Extrakt gelangt in eine Destillationsanlage, die die Essigsäure und das Ethylacetat sauber voneinander trennt.

Für das Lösungsmittel beginnt nun erneut der Kreislauf: Es wird wieder in der Extraktionskolonne eingesetzt. Die Essigsäure wird als wertvoller Rohstoff verkauft.
Zeolith-Rückstände

Endlich gut genug

Mit dem Einsatz von Zeolithen gelang Henkel vor mehr als einem Jahrzehnt ein wichtiger Schritt in Richtung umweltverträglicherer Inhaltstoffe in Waschmitteln. Zeolithe sind siliziumhaltige, anorganische Verbindungen, die auch als Mineralien an vielen Stellen der Erde natürlich vorkommen. Sie erledigen im Waschmittel die gleichen Aufgaben wie Phosphate. Noch bis in die 70er Jahre wurden Phosphatverbindungen in Pulverwaschmitteln eingesetzt, um in der Waschflotte die Härtbildner (Calcium und Magnesium) außer Gefecht zu setzen.

Doch während die Härtbildner „nur“ das Gewebe strapazieren, Flecken und/oder einen ranzigen Geruch auf der Wäsche zurücklassen, können die gegen sie eingesetzten Phosphate den Flüssen und Seifen durch ihren Dünge-Effekt (Eutrophierung) schwer zu schaffen machen.

Chemisch identisch und doch nicht dasselbe

Neues Verfahren macht die Korngestaltung passend

Chrom-Recycling

Eine gute Ausbeute

Einzeln machen sie nicht viel her, doch in ihrer Gesamtmenge bekommen sie eine erhebliche Bedeutung: Jedes Jahr fallen bei der Lederproduktion in Deutschland rund 20.000 Tonnen →Falzspäne an. Wenn unterschiedlich dicke Härte egalisiert werden, sind diese Späne unvermeidlich. Doch was für die Lederindustrie →schwermetallhaltigen Abfall darstellt, ist für die Henkel-Tochter Grünau im bayerischen Wertvoller Rohstoff. Seit über 70 Jahren gewinnt Grünau aus den maximal 20 Millimeter langen Spänen wichtige Grundstoffe für die Textil- und Kosmetikindustrie.

Proteine werden heute enzymatisch-chemisch gespalten

Weniger Sonderabfall

Einfach und sicher

Tag für Tag gingen unzählige dieser abgedeckten Kessel auf den Weg; es blieben unzählige verschmutzte Folien zurück. Gemeinsam mit den Rückständen aus der Reinigung der Kessel wurden sie für Siebel zu einer großen Umwelt- und Kostenbe-
Grenzenlos

Weil das vorhandene Pufferbecken zusätzlich als aerobe biologische Behandlungstufe genutzt und gleichzeitig die Festbettbiologie besser belüftet wird, konnte der Wirkungsgrad der biologischen Stufe um mehr als ein Drittel auf über 84 Prozent gesteigert werden.

Wirkungsgrad der Kläranlage in Japan von mehr als 97 Prozent

Doch die Anfangserfolge reichen den beiden Unternehmen noch nicht: Im Rahmen einer zweiten Stufe wollen Henkel-Ecobab und COGNIS die derzeitige Abwasserschmutzung weiter reduzieren.
Neue Hydrieranlage

Erfahrung kommt der Umwelt zugute

Umweltschutz auch beim Katalysator-Wechsel

Seit November 1993 in Betrieb: die weltweit größte Hydrieranlage für Fettalkohole in Düsseldorf.

Erhöhte Sicherheit

Aller guten Ding sind drei

Verminderte Staubbelastung

Der Zyklon hat ausgiedient

Lärmminderung

Dämpfer für laute Betriebe

Schallwellen zehren sich durch mehrfache Reflexion auf

Der Fünf-Tonnen wurde speziell auf die Anforderungen der Waschmit- telproduktion und ihrer wasser- dampfhaften Abluft zugeschnitten. Er ist vollständig aus Stahl und wirkt schalldämmend, weil sich die Schallwellen in seinem Innern durch mehrfache Reflexion gegen- seitig aufzehren. Normale Absorp-
Bodensanierung

Nie mehr Last mit alten Lasten

Was man früher nie für möglich gehalten hätte: Leichtflüchtige Chlorkohlenwasserstoffe sind kaum aufzuhalten. Selbst 20 Zentimeter dicke Betonplatten durchdringen sie mühelos.

Diese unliebsame Erfahrung machte auch das Heidelberger Unternehmen Teroson, als es auf seinem Gelände nach Altlasten suchte – und fündig wurde: Das Erdreich unter der 600 Quadratmeter großen Lagerhalle (Bau 15) zeigte mit einem Gramm pro Kubikmeter Bodenluft eine extrem hohe Belastung mit chlorierten Kohlenwasserstoffen (CKW).

Durchdringen auch Beton: Chlorkohlenwasserstoffe

Vorbildliche Verhältnisse

Im Werk der Tochterfirma Emery in Cincinnati, Ohio, werden seit 1840 Öle und Fette verarbeitet. Damals zu Kerzen und Lampenöl, heute zu oleochemischen Produkten und chemischen Spezialitäten auf der Basis nachwachsender Rohstoffe. Über 800 Mitarbeiter sind derzeit in dem Werk in Cincinnati beschäftigt, das 1989 zur Henkel-Gruppe kam und heute ihr größter Produktionsstandort in Nordamerika ist.

US-Umweltschutzvorgaben werden weit übertroffen

Ziel für die Zukunft: weitere Reduktion der Methanol-Emissionen

Meilensteine des Umweltschutzes bei Henkel

Umsatzanteile nach Regionen 1993
Umsatzanteile nach Produktbereichen 1993
Aufwendungen für Umwelt- und Verbraucherschutz
Produktionsmengen
Schwefeldioxid- und Stickoxid-Emissionen

Emissionen organischer Stoffe und Staub-Emissionen
Stromerzeugung
Schwefeldioxid- und Stickoxid-Emissionen des Düsseldorfer Henkel-Kraftwerks
Staub-Emissionen des Düsseldorfer Henkel-Kraftwerks

Abwassermengen
CSB- und Sulfat-Frachten im Abwasser
Nickel- und AOX-Frachten im Abwasser
Kupfer- und Chrom-Frachten im Abwasser

Reststoffbilanz 1993
Abfallmengen und Entsorgungswegen
Entwicklung der Lärmmisionen
Geruchs-Bemissionen 1993

Meldpflichtige Arbeitsunfälle
Umweltschutz-Schulungen
Wasserglas-Produktionsmengen
Staub- und Stickoxid-Emissionen der Wasserglas-Betriebe

Lösemittelverbrauch in den Klebstoffbetrieben
Verbrauch von Chlorwasserstoffen
Umweltmonitoring = Tenside im Rhein
Umweltmonitoring = Bor und Phosphat im Rhein

Waschmittel-Dosierung am Beispiel Persil
Paddmittel-Mengen
Meilensteine des Umweltschutzes bei Henkel

1953
Beginn erster wissenschaftlicher ökologischer Untersuchungen und Forschungsarbeiten.

1959
Einführung regelmäßiger ökologischer Gütekontrollen bei Wasch- und Reinigungsmitteln.

1973
Patentsanmelung zur Verwendung von Natrium-Aluminium-Silikaten (Zeolithe) als Phosphat-Austauschstoffen in Waschmitteln.

1955
Entwicklung von Labor-Testmethoden zur Beurteilung des Umweltverhaltens von Produkten.

1965
Beginn der Forschungsarbeiten zur Entwicklung von Phosphat-Austauschstoffen für Waschmittel.

1976
Markteinführung der ersten zeolithhaltigen Waschmittel mit verringerter Phosphatschadigkeit.

1958
Beginn eines regelmäßigen Umweltmonitoring in deutschen Flüssen, zunächst auf Tenside, später auch auf andere Waschmittelinhaltstoffe.

1971
Einrichtung der „Leistelle Umwelt- und Verbraucherschutz“ als zentrale Koordinationsstelle für Fragen der Produktivität.

1982

Wasserprobe am Rhein, hier bei Düsseldorf.

Prodxan – 1983 das erste phosphatfreie Waschmittel in Deutschland.

Regelmäßige Wasser-Analysen in den Düsseldorfer Henkel-Laboratorien.

Nicht abbaubare Tenside führten Ende der 50er Jahre zu Schaumbergen auf den Flüssen.
1983
Markteinführung des ersten phosphatfreien Pulverwaschmittels auf der Basis von Zeolithen.

1987
In den Unternehmensleitlinien erhält der Umweltschutz als Unternehmenszweck den gleichen Stellenwert wie beispielsweise das Erzielen von Gewinn.

1988
Unternehmensleitung und Betriebseinschluss eine Betriebsvereinbarung über die Zusammenarbeit im Umweltschutz ab. Hierin sind weitgehende Informations- und Mitwirkungsrechte für den Betriebseinschluss festgelegt.

1990
Beginn der systematischen Umweltschulung der Mitarbeiter.

1991
In einer Richtlinie „Umweltschutzhilfe“ werden Organisations- einheiten zur Durchführung und Dokumentation regelmäßiger Umwelt- schutzbesprechungen verpflichtet.

1989
In einem weltweiten Okoschutz wird die aktuelle Umwelt situation aller Produktionsstätten der Henkel-Gruppe und aller Produkte nach einheitlichen Kriterien erfasst.

1991
Henkel bekannte sich als eines der ersten deutschen Unternehmen zu den Prinzipien der „Business Charter for Sustainable Development“ (Charta für eine langfristig tragfähige Entwicklung), die von der Umweltkommission der Internationalen Handelskammer formuliert wurde.

1992
Henkel veröffentlicht den ersten Umweltbericht.

Kommunikation in Sachen Umwelt- und Verbraucherschutz, beispielsweise mit Faßblättern, Broschüren und Berichten.

Produktionskontrolle in der Zeolith-Herstellung in Düsseldorf.

Schematische Darstellung der Wirkung von Zeolithen beim Waschen.
Umsatzanteile nach Regionen 1993

Nach dem Sitz der Abnehmer

- Bundesrepublik Deutschland 29%
- Übriges Europa 48%
- Übriges 23%

Umsatzanteile nach Produktbereichen 1993

- Chemieprodukte 27%
- Metallchemie 5%
- Klebstoffe/Chemische technische Markenprodukte 16%
- Kosmetik/Körperpflege 10%
- Wasch-/Reinigungsmittel 31%
- Hygiene 10%
- Sonstiges 1%

Aufwendungen für Umwelt- und Verbraucherschutz

Henkel-Gruppe weltweit
Angaben in Millionen DM

- Investitionen
- Forschung und Entwicklung
- Betriebskosten

Produktionsmengen

Henkel-Stammwerk Düsseldorf

Angaben in Tausend Tonnen

Gesamtmenge der in den Produktionsbetrieben in Düsseldorf-Hohausen hergestellten Produkte.

Schwefeldioxid- und Stickoxid-Emissionen

Henkel-Stammwerk Düsseldorf

Angaben in Tonnen

- Schwefeldioxid (SO₂)
- Stickoxide (NOₓ)

Die Emissionen werden im wesentlichen durch Kraftwerk und Wasserglasfaßwerk bestimmt (siehe Grafiken Seiten 37 und 43). Die durchgeführten Maßnahmen zur Reduzierung von Schwefeldioxid und Stickoxiden haben die Emissionen ganz erheblich vermindert.

Vorläufige Werte, da bei Redaktionschluss noch nicht alle Daten abschließend ausgewertet waren.
Emissionen organischer Stoffe und Staub-Emissionen

Henkel-Stammwerk Düsseldorf
Angaben in Tonnen
- organischer Stoffe
- Staub einschließlich Aerosole, das Aerosole von Staub insofern technisch nur schwer unterscheidbar sind.

*Vorläufige Werte; da bei Redaktionschluss noch nicht alle Daten ausgewertet waren.

Stromerzeugung

Kraftwerk des Henkel-Stammwerks Düsseldorf
Angaben in Millionen Kilowattstunden

Schwefeldioxid- und Stickoxid-Emissionen des Düsseldorfer Henkel-Kraftwerks

Angaben in Tonnen
- Schwefeldioxid (SO₂)
- Stickoxide (NO₂)

Vorläufige Werte, die bei Redaktionsschluss noch nicht alle Daten abschließend ausgewertet waren.

Staub-Emissionen des Düsseldorfer Henkel-Kraftwerks

Angaben in Tonnen

Die Verringerung der Staub-Emissionen in den vergangenen Jahren ist auf die Stilllegung einer alten Kesselanlage sowie auf die Staubabscheidung der Rauchgasentschwefelungsanlage zurückzuführen.

Vorläufiger Wert, da bei Redaktionsschluss noch nicht alle Daten abschließend ausgewertet waren.
Abwassermengen

CSB- und Sulfat-Frachten im Abwasser

Nickel- und AOX-Frachten im Abwasser

*Werte werden seit 1986 erfaßt.

Kupfer- und Chrom-Frachten im Abwasser

*Für die Jahre vor 1989 liegen keine vergleichbaren Werte vor.

Andere -Schwermetalle - vor allem die ökologisch bedenklichen Cadmium und Quecksilber - werden in den Produktionsanlagen im Henkel-Stammwerk Düsseldorf nicht verwendet oder verarbeitet.
Umweltdaten

Reststoffbilanz 1993

Henkel-Stammwerk Düsseldorf

Gesamte Reststoffmenge: 82.774 Tonnen

stoffliche Verwertung: 42.386 Tonnen (51%)

Abfälle zur Entsorgung: 21.593 Tonnen (26%)

thermische Verwertung: 18.605 Tonnen (23%)

Abfallmengen und Entsorgungswege

Entwicklung der Lärm-Immissionen

Darstellung der Linien mit gleicher Schallpegel von 50 Dezibel (A) in der Umgebung des Henkel-Stammwerks Düsseldorf:
- 1987
- 1992
- 1993
Abstand der Gitterlinien: 200 Meter

Geruchs-Immissionen 1993

Darstellung der Ergebnisse aus 42 Begehungen von jeweils 12 Messpunkten in der Umgebung des Henkel-Stammwerks Düsseldorf:
- kein Geruch
- sehr schwacher Geruch
- schwacher Geruch
- Messpunkt

Anzahl und Lage der Messpunkte richten sich nach der Bebauung in der Werkumgebung.

Übersiegend wurde kein Geruch wahrgenommen. Deutliche bis extrem starke Gerüche sind bei keiner der Begehungen aufgetreten.
Meldepflichtige Arbeitsunfälle

Angaben bezogen auf
Tausend Beschäftigte

- Hauptverband der gewerblichen Berufsgenossenschaften
- Berufsgenossenschaft BGS der Chemischen Industrie
- Henkel-Stammwerk Düsseldorf

Umweltschutz und Arbeitssicherheit sind in der Chemischen Industrie unmittelbar miteinander verbunden. So wie Anlagen mit hohem Umweltschutzstandard auch einen hohen Sicherheitsstandard haben, resultieren umweltgerechte und sicherheitsbewusstes Verhalten der Mitarbeiter aus der gleichen positiven Einstellung gegenüber diesen Themen.

Quellen: Henkel und BGS Chemie

Umweltschutz-Schulungen

Henkel-Stammwerk Düsseldorf
Im Umweltschutz geschulte Mitarbeiter

Wasserglas-Produktionsmengen

Staub- und Stickoxid-Emissionen der Wasserglas-Betriebe

Vorläufige Werte, da bei Redaktionsschluss noch nicht alle Daten abschließend ausgewertet waren.
Umweltdaten

Lösemittelleinsatz in den Klebstoffbetrieben

Die seit Jahren intensiven Bemühungen zur Substitution von "organischen" Lösemitteln haben vor allem bei den als kritisch zu betrachtenden aromatischen und chlorierten Lösemitteln zu erheblichen Verminderungen geführt. Da nicht alle Klebstoffsysteme auf eine andere Basis umgestellt werden können, sind bei den weniger kritischen Lösemitteln zum Teil Zunahmen festzustellen.

Verbrauch von Chlorkohlenwasserstoffen

Umweltmonitoring – Tenside im Rhein

Umweltmonitoring – Bor und Phosphat im Rhein

Umweltdaten

Waschmittel-Dosierung am Beispiel Persil

Empfohlene Dosierung für normal verschmutzte Wäsche im Wasserhärtebereich III. Angaben in Gramm:
- Normalware: 249
- Konzentrat Persil suprak: 216
- Megaperl (z.B. in Österreich): 172

Packmittel-Mengen

Durchschnittliche Mengen an Packmitteln für die Wasch-, Putz- und Reinigungsmittel der Henkel KGaA. Angaben in Kilogramm je Tonne Produkt:
- 90: 96,1
- 91: 95,8
- 92: 91,7
- 93: 75
- 94: 67,2

(Henkel KGaA)
Acrylate Salze der Acrylsäure. Werden insbesondere als Rohstoffe für spezielle -Polymere verwendet.

Adsorption Anlagerung von gasförmigen oder gelösten Stoffen an eine Materialstruktur mit großer Oberfläche. Durch Adsorption lassen sich Stoffe aus Gasen oder Flüssigkeiten entfernen.

Aber Bedingungen, die durch die Gegenwart von freiem Sauerstoff gekennzeichnet sind.

Aliphatische Kohlenwasserstoffe Klasse organischer Verbindungen, deren Molekülstruktur in Form gerader oder verzweigter Ketten vorliegt. Im Gegensatz zu den -Aromaten enthalten sie keine Benzolkörper.

alkalisch Wässrige Lösung mit einem pH-Wert über 7.

Alkane - Aliphatische Kohlenwasserstoffe, in deren Molekülstruktur keine Doppelbindungen enthalten sind.

Alkylpolyglycoside (APG) Neuartige -Tenside, die ausschließlich aus nativen Rohstoffen wie Stärke und Zucker eingesetzt und -Fettalkoholen andererseits hergestellt werden.

anaerob Bedingungen, die durch das Fehlen von freiem Sauerstoff gekennzeichnet sind.

Anionen Negativ geladene -Ionen.

Anionensalze/anionische Tenside -Tenside, die in wässriger Lösung in elektrisch geladene -Ionen zerfallen und bei denen die negativ geladenen -Anionen Träger der speziellen Tensideigenschaften sind.

AOX-Fracht Maßzahl für die Summe der organischen Halogen- (insbesondere Chlor-) Verbindungen im Abwasser.

Aromaten Klasse organischer Verbindungen, die sich vom Benzol ableiten. Charakteristischer Baustein ist der sechseckige Benzolring.

Bleicheisen - Spezielle Mineralien, die in der Lage sind, bestimmte Verunreinigungen an sich zu binden und deshalb zur Reinigung von Produkten verwendet werden.

Chloride Salze der Salzsäure, häufiger Vertreter: Natriumchlorid - Kochsalz.

Chlorierte Kohlenwasserstoffe (CKWs) - Chlorierte Kohlenwasserstoffe Organische Lösungsmittel, die durch chemischen Einbau von Chlor ihre Brennbarkeit verlieren. Diesem Vorteil des sicheren Umgangs stehen jedoch Nachteile beim Sicherheits- und Umweltschutz entgegen.

DIN ISO 9001 Internationale Norm, die ein durchgängiges, umfassendes Qualitätssicherungssystem beschreibt, das alle Stufen eines Produkts von der Entwicklung über die Materialbeschaffung und die Produktion bis zur Auslieferung an die Kunden erfasst.

Dispersion In Wasser fein verteilte, aber nicht gelöste Stoffe.

DOC Gelöster organischer Kohlenstoff, Maßzahl für die Gesamtabscheidung an gelösten organischen Verbindungen.

Emissionen Die von industriellen Anlagen, Kraftfahrzeugen mit Verbrennungsmotoren, Haushaltsfeuerungsanlagen oder bei sonstigen technischen Vorgängen in die Atmosphäre gelangenden gasförmigen, flüssigen oder festen Stoffe.

Emulsion Verteilung feiner Tropfen einer Flüssigkeit in einer anderen, zum Beispiel Wasser in Öl.
Enzymo Hochmolekulare Eiweißstoffe, die als Bio-Katalysatoren wirksam sind. Bestimmte Enzyme dienen in Waschmitteln zur Entfernung hartnäckiger Verschmutzungen, weil sie deren Abbau beschleunigen.

Essigäureanhydrid Durch Abspaltung von Wasser am Essigäure entstehende, besonders konzentrierte essigäureähnliche Verbindung.

Fällungsanlage Anlage zur Ausfällung von Verunreinigungen aus Abwässern. Dem Abwasser werden spezielle Chemikalien zugegeben, die die gelösten Verunreinigungen in eine unlösliche Form überführen und so aus dem Abwasser abscheiden.

Felspäne Bei der Egalisierung unterschiedlich dicker Ledermäntel anfallende Splitte.

Feststoffbiologie Biologische Abwassereinigungsanlagen, in der die Mikroorganismen nicht frei im Wasser vorkommen, sondern als biologische Rasen auf Trägermaterialien aufgewachsen sind.

Fettalkoholanlage Anlage zur Herstellung von Fettalkoholen.

Fettalkohole Langkettige Alkohole, die bei Herstellung von Fettsäuremethylestern oder direkt aus Fetten durch Umsetzung mit Wasserstoff (-Hydrierung) gewonnen werden. Fettalkohole sind ein wichtiger Rohstoff für Tonanilide.

Fettalkoholsulfate (FAS) Bedeutende Gruppe von Tonaniliden auf Basis von Fettalkoholen.

Fettsäuremethylester Fett säureester mit Methanol, Zwischenprodukt bei der Herstellung von Fettalkoholen.

Flockung Verfahren zur Abtrennung fein dispergierter Stoffe aus Flüssigkeiten. Die feinen Flockteilchen werden zu größeren Flocken zusammengeballt, die sich leicht aus dem Wasser abscheiden lassen.

Glycerin Einer der beiden Hauptbestandteile aller Öle und Fette; dient als Lösungsmittel und als Zwischenprodukt für zahlreiche weitere Substanzen.

Hydrierung Produktionsanlage, in der chemische Reaktionen mit Wasserstoff durchgeführt werden.

Hydrierung Chemische Reaktion mit Wasserstoff.

Hydrolypse Chemische Zersetzung von Stoffen unter der Einwirkung von Wasser.

Immissionen Einwirkung von Luftverunreinigungen, Geräuschen, Strahlungen oder Störungen auf Menschen, Tiere, Pflanzen oder Gegenstände. Im Rahmen der Luftreinhaltung Bezeichnung für die von der Atmosphäre aufgenommenen Emissionen, die sich bis auf die bestimmte Konzentration verteilen.

Imprägniermittel Produkte, durch die Materialien gegen das Eindringen und die Einwirkung von Feuchtigkeit...
gesichert werden. Durch Impreg-
gniertel werden zum Beispiel
Textilien wasserdicht gemacht
und Fasaden von Gebäuden gegen
feuchte Feuchtigkeit geschützt.

K Katalysator Spezielle Substanz, die
den Abbau einer chemischen Reak-
tion beschleunigt, ohne selbst dabei
verändert zu werden.

Kohlenstoff Gasförmiges Verbre-
chungsprodukt aller Kohlenstoffhalti-
gen -organischen Stoffe. Kohlenstoff
tritt wesentlich zum globalen
Treibhauseffekt bei. Die bedeutend-
ste Kohlenstoffquelle ist die Nut-
zung fossiler Rohstoffe wie Kohle
und Erdöl insbesondere zur Ener-
giegewinnung und für den Kraftfahr-
zeugverkehr.

Kollagenhydrolysate Durch
-Hydrolyse von Leder entstehende
Stoffe. Wervolle -Tensid-Rohstoffe für
bessere hautverträgliche Produkte.

Kondensations 1. Wiederverflüssi-
gung der bei einer Destillation ent-
stehenden Dämpfe. 2. Chemische
Reaktion, bei der als Nebenprodukt
Wasser entsteht.

Kohlenstoff Kohlenstoff, der in Form von
organischen Verbindungen vorliegt.

Organische Stoffe/Verbindungen
Stoffe, in denen als charakteristische
Hauptelemente Kohlenstoff und
Wasserstoff enthalten sind. Organi-
sche Stoffe treten in der Natur auf,
können aber auch künstlich herge-
stellte Stoffe, zum Beispiel aus
Erdöl.

Phosphate Salze der Phosphorsäure.
Sie sind unterdessen in Pflan-
zenzusätzen, in der Verkohlung
von Gewässern und in der
Bodenbehandlung wichtig.
Hauptstichpunkte für
Phosphate in Gewässern sind Fällki-
en und Düngegut. Die früher in
Wassermitteln enthaltenen Phospha-
te können heute ersetzt werden.

Phosphatierung Behandlung von
Metalloberflächen (Stahl, verzinkter
Stahl), bei der zum Schutz gegen
Korrosion dünn Phosphatschichten
erzeugt werden.

pH-Wert Ein Kennzahl für den ba-
sischen (alkalischen), sauren
oder neutralen Charakter wäfigriger Lö-
sungen, wobei der pH-Wert 7 „neu-
tral“ bedeutet. Ist er größer als 7,
spricht man von „basischen“ Lösun-
gen, ist er kleiner als 7, spricht man
von „sauren“ Lösungen.

Polyglycerine Stoffe, die durch
-Kondensation mehrerer -Glyce-
рин-Moleküle entstehen. Treten als
Nebenprodukte bei der Glyzerinher-
estellung auf.

Polymer Stoffe, die aus einer Viel-
zahl sich wiederholender Bausteine
aufgebaut sind, zum Beispiel Kunst-
stoffe.

Polyurethane Kunststoffe mit extrem
breiten und gezielt einstellbaren An-
wendungseigenschaften; für Kleb-
stoffe, Dickstoffe, Schäume, Form-
teile und viele andere Anwendungen
gesucht.

Primärenergie Ursprünglicher, in
der Natur vorkommender Energi-
träger wie Kohle, Erdöl oder Was-
serwerk. Wird häufig in leichter zu
handhabende Sekundärenergien um-
gewandelt, zum Beispiel Strom.

Protease -Enzym, das in der Lage
ist, gezielt Eiweißstoffe abzubauen.

Proteine Hochmolekulare Eiweiß-
stoffe.
Rauchgasentschwefelung Verfahren zur Entfernung von Schwefeldioxid aus den Verbrennungsabgasen von Kraftwerken und anderen Feuerungsanlagen.

Reststoffe Bei einem Produktionsverfahren zurückbleibende Stoffe. Wenn sie keiner Verwertung zugeführt werden können, müssen sie als Abfall entsorgt werden.

Schwermetalle Metalle mit einer Dichte über vier Gramm pro Kubikzentimeter. Da viele Schwermetalle und ihre Verbindungen giftig und umweltgefährlich sind, werden sie sehr kritisch betrachtet. Es gibt zum Beispiel sehr starke Schwermetallgenwerte für Trinkwasser und Lebensmittel, aber auch für Ackerködchen und für Abwässer, die in Kläranlagen oder Gewässer eingeleitet werden.

Silikone Gruppe von Verbindungen auf Basis von Silizium. Aufgrund ihrer Elastizität und ihrer wasserabs-}

Tonnenkilometer Rechnerisches Produkt aus beförderter Frachtmenge und zurückgelegter Transport-Entfernung. Dient zum Vergleich unterschiedlicher Transportleistungen.

Vakuumstrahler Einrichtung, um beispielsweise in Produktionsanlagen einen Unterdruck zu erzeugen. Hierzu wird zum Beispiel die Strömung eines Wasserstrahls ausgenutzt.

Veresterung Chemische Reaktion zur Herstellung von Estern aus Säuren und Alkoholen.

Zeolithes Natron-Aluminium-Silikate, die aufgrund ihrer räumlichen Struktur Hohlräume aufweisen und so rührziehende -Tonen des Wassers binden können.

Zykloanlagenzelle zur Abtrennung von Staub aus Abluft. Der Luftstrom wird im Zyklon umgelenkt, wodurch die schwereren Staubpartikel abgetrennt werden.