The Phenion® Full-Thickness (FT) Skin Model resembles native human skin in its histological architecture as well as in displaying a wide spectrum of corresponding physiological parameters.

The skin model production lab is located at the Biological and Clinical Research (BCR) Department within Henkel Beauty Care Technologies, Düsseldorf. To cover the needs of genotoxicity assessment of chemicals we are currently working on the validation of the Phenion® FT Skin Model for the Comet Assay. For further product details visit www.henkel.com/biological-and-clinical-research-43151.htm

Bioartificial human skin for R&D and safety assessment - commercially available since 2006
Phenion® FT Skin Models
The reliable tool for toxicological and efficacy studies

Features of the skin equivalent:
- Consists of human primary fibroblasts and keratinocytes from single donor origin
- Cell batches are carefully selected for optimal 3D-tissue composition
- Cornified surface
- Multi-layered epidermis
- The matured dermis displays excellent elastic fiber network
- Circular tissue with a diameter of 1.3 cm
- Long-term cultivation for at least 10 days allows repeated treatments
- Suitable for topical and systemical substance application

Both skin compartments exhibit physiologically relevant parameters:

Keratinocyte differentiation into a multi-layered stratified epithelium is associated with the expression of specific markers like cytokeratin 10, filaggrin, transglutaminase and involucrin.

At the dermal-epidermal junction zone crucial basement membrane proteins, like collagen IV and VII and laminin-5 support epithelial adhesion.

During maturation pivotal connective tissue components including collagenous and elastic networks - consisting of proteins like elastin and fibrillin-1 - are established in the dermis.

The Phenion® FT Skin Model allows investigation of the following exemplary endpoints:
- Epidermal and dermal differentiation
- Generation of the elastic system
- Safety and Efficacy testing of substances / products
- Cytotoxicity
- Genotoxicity
- Skin Metabolism
- Penetration
- Wound healing

Your contact for requests and ordering:
Lars Vierkotten
Skin Model Production
E-mail skinmodels@henkel.com
Phone (+49) 221 797-9744
The Phenion® Full-Thickness Skin Model

Bioartificial human skin for R&D and safety assessment – commercially available since 2006

References

3D Skin Comet assay: Status quo of the ongoing validation
9th World Congress on Alternatives and Animal Use in Life Sciences 2014

Wiegand C, Hewitt N, Merk HF, Reisinger K.

Dermal xenobiotic metabolism: A comparison between human native skin, four in vitro skin test systems and a liver system

3D Skin Comet assay validation using full thickness tissues: Update on the ongoing validation
ICEM 2013

Esterase activity in excised and reconstructed human skin - biotransformation of rednicarbate and the model dye fluorescein diacetate.

Characterization of enzyme activities of Cytochrome P450 enzymes, Flavin-dependent monooxygenases, N-acetyltransferases and UDP-glucuronosyltransferases in human reconstructed epidermis and full-thickness skin models.

Ackermann K, Borgia SL, Korting HC, Mewes KR, Schäfer-Korting M.

The Phenion full-thickness skin model for percutaneous absorption testing.
Skin Pharmacol Physiol. 2010. 23:105-12.

Meloni M, Farina A, de Servi B.

Molecular modifications of dermal and epidermal biomarkers following UVA exposures on reconstructed full-thickness human skin.
Schoepe S, Schäcke H, Bernd A, Zöller N, Asadullah K.
Identification of novel in vitro test systems for the determination of glucocorticoid receptor ligand-induced skin atrophy.
Skin Pharmacol Physiol. 2010. 23:139-51.

Evaluation of beneficial and adverse effects of glucocorticoids on a newly developed full-thickness skin model.

Elastin expression in a newly developed full-thickness skin equivalent.
Skin Pharmacol Physiol. 2007. 20:85-95.

Described in

Groebler F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K.
Skin tissue Engineering - in vivo and in vitro applications.

De Wever B, Petersohn D, Mewes KR
Overview of human three-dimensional (3D) skin models used for dermal toxicity assessment, Part 1.
Household and Personal Care Today. 2013. 8:18-22

Contact

To request information regarding the Phenion® FT Skin Model or to place orders you may contact

Lars Vierkotten
Skin Model Production
e-mail lars.vierkotten@henkel.com
phone +49 (0)211/797-9744